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Abstract – This paper presents a general methodology for the off-line three-dimensional
optimal trajectory planning of robot manipulators in the presence of moving obstacles.
Obstacle avoidance is obtained by adding penalty functions to the function to be minimized.
Besides, constraints which describe minimal acceptable distance between potentially
colliding parts are also included to the general non-linear optimization problem. The
obstacles are protected by spherical or hyper-spherical security zones which are never
penetrated by the end-effector. When dealing with moving obstacles either the objective
function and the constraint functions have to be up-dated at each time instant. Multi-criterion
objective functions are constructed to take into-account traveling time and mechanical energy
which are both minimized simultaneously. Numerical applications show the efficiency of the
methodology presented.
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1. INTRODUCTION

Different engineering applications involve robot manipulators working in the presence of
fixed or moving obstacles. When repetitive processes are concerned it is possible to develop a
methodology to move a robot manipulator along a specified geometric path avoiding
obstacles. In this case path planning is defined as finding continuos and mutually compatible
trajectories for all its parts, such that the resulting motions is collision-free. This can be
achieved for minimum cost configuration through optimization techniques.

The problem of optimization of the trajectory of robot manipulators in the presence of
fixed obstacles has been treated by different authors (Ferreira & Sá da Costa, 1997). Previous
papers presented the case in which the optimization problem was written as a multiobjective
one, i. e., the total traveling time and the mechanical energy absorbed by the actuators were
considered together to build a scalar objective function to be minimized (Richard, 1993) .
When moving obstacles are sharing the same workspace occupied by the robot  manipulator
the optimization of the trajectory defined by the end-effector is complex ( Nearchou, 1998).



This complexity is associated with the large number of constraints to be taken into-account by
the optimizer. These constraints are in this case time dependent.

This paper presents a design methodology to obtain the optimal off-line trajectory
planning of robot manipulators when moving obstacles have to be avoided by the end-
effector. The problem of optimal planning concerns the determination of the end-effector
robot motion at a minimum time and minimum mechanical energy between two given points
while satisfying the limits of the actuator efforts and avoiding collision with moving and fixed
obstacles. The obstacle avoidance is expressed in terms of the distances between potentially
colliding parts and the motion is represented using translation and rotational matrices.  The
dynamical model of the robot is derived using Euler-Lagrange’s equations and Lagrange’s
energy function. The inertia terms of the actuators are not neglected and friction forces are
included in the equations of motion. The joint trajectories are formulated using uniform cubic
B-spline functions, given only the initial and final points. When obstacles are found in the
three-dimensional workspace it is necessary to add penalty functions to the multi-objective
problem to guarantee free-collision motion. The obstacles are protected by spherical or hyper-
spherical security zones which are never penetrated by the end-effector. To reduce the
computational effort only the closest obstacles are included in the penalty function at a given
time. The important assumption is that complete information on the geometry of the robot and
the obstacles are given beforehand. Two numerical applications related to a Stanford
manipulator are presented focusing at the methodology developed in this paper. In both cases
fixed and moving obstacles share the robot three-dimensional workspace.

2. PROBLEM  STATEMENT

Let a manipulator with n degree of freedom (d.o.f.) , consider that j represents the joints
and m represents the knots used to construct the trajectories. The task is to move the robot in
the workspace avoiding the moving obstacles lψ  , while minimizing the traveling time and the
energy consumed by the robot, subject to physical constraints and actuator limits.

The optimal  traveling time and the minimum mechanical energy of the actuators are
considered together to build a  performance index such as the multi-criterion optimization
problem is defined as follows:
Minimize:
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where: T - total traveling time; ui  -  generalized forces; disf  - penalty parameter to guarantee
free-collision motion ; α 1  , α 2  , 3α  - weighting factors.

Subject to:   

max jji QCtq ≤|)(|  (2)

  max jji VCtq ≤|)(| �   (3)

max jji WCtq ≤|)(| ��    (4)

max jji JCtJ ≤|)(|  (5)

max jji UCtu ≤|)(|    ;   for  j=1,2,...,n   and   i=1,2,...,m-1  (6)

0)(0 ≤− tdd lqlq      for  (l , q) ε Id   (7)



where: jQC  is the displacement constraint,  VC j  is the velocity constraint,  WC j  is the

acceleration constraint, JC j  is the jerk constraint (jerk is defined as the rate of change of

acceleration), and UC j  is the force/torque constraint  for joint  j. The obstacle avoidance is

given by d tlq ( ) , where Id   represents the set of  possibly colliding pairs of parts.

According to Saramago & Steffen (1998) the generalized forces are calculated as:
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ijD : inertia system matrix, iIa : actuator inertia; ijkC : Coriolis and  centripetal forces matrix;

iJ :  moments of inertia;   ir  :  center of mass;  iG : gravity loading  vector; g :  acceleration
due to gravity with respect to the base coordinate system.

Energy dissipation is taken into-account in this paper using the model presented by Van
Willigenburg & Loop (1991) in which both friction (Coulomb) and linear viscous damping
are considered together to write the dissipation force:

qfqsignfF dcdiss �� += )(  (12)

where: cf  is the Coulomb force coefficient  and df  is the viscous damping coefficient .

The  generalized forces can be rewritten including the dissipation terms:
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To construct the joint trajectories, given only the initial and final points( q1 and qm ), as
shown in Fig. 1, let a uniform cubic B-spline defined as a polynomial third degree function  f .

If the terminal time  T  is fixed, the  trajectory  q ti ( )  will be composed of  uniform cubic
B-splines with knots  0 1 2 1= < < < < =−t t t t Tm m� ,  i. e.
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jb−  are the basis function and γ j
i   are the coefficients of the B-spline approximation for q ti ( )

on  the interval I j .

Figure 1 – Trajectory of the end-effector.

For the problems with free terminal time a new  time variable τ = t T  is introduced. This
way  the  interval [0,T] is replaced by the non-dimensional interval [0,1]. In this case, the
trajectories qi ( )τ are obtained with  knots  0 11 2 1= < < < < =−τ τ τ τ� m m   as:
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where )(τi
jq  is  given by  Eq. (15). Since q tj

i ( )  is a  cubic polynomial in t, its  derivatives

with respect to t are well  defined . The initial guess for the unknown spline coefficients is
obtained
 by fitting the straight lines joining the given initial ( q1 ) and final ( qm ).

When the m points and terminal time T are adopted, Eq. (16) leads to n(m+2) unknowns
γ j

i . The number of equations for each joint is m. So it is necessary, given velocities  mqq �� ,1 ,

to add two new equations to the  linear system. This linear system can be represented by:
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Thus, adopting the points iq , the unknown spline coefficients γ j
i  are obtained solving

system (17), the displacement is obtained using Eq. (15), the velocity and the acceleration are
given by derivative of the Eq. (15). These equations are used to determine the inequality
kinematic constraints (see Eq. (2)-(5) above). In the optimization of the trajectories the
decision variables are the polynomial coefficients γ j

i   and  the  total time T. We note that the

dimension of this design variable vector is n(m+2)+1.
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3. OBSTACLE AVOIDANCE

In this problem, besides the kinematic constraints, we must add special constraints
corresponding to obstacle avoidance. These constraints require that:

∅=∩ )()( tt ql ψψ    for (l, q) ε Id (18)

where )(tlψ  are sets in R 2  or R 3  and ∅  is the empty set.

The sets )(tlψ describe the space occupied by the parts of the manipulator and the space
occupied by the obstacles in the manipulator workspace as given by Eq. (19). The sets Cl

characterize the shape of the rigid bodies, while T tl ( )  and )(tRl describe  the translation and

rotation of the bodies, respectively, i.e.:

llll CtRtTt )()()( =ψ (19)

Each point belonging to an obstacle contour can be calculated  as:
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where zyx ppp ,,  represent the translation and )(tθ  the rotation of the point lll zyx ,, , as

shown in Fig. 2. The distance between the sets )(td lq   must be recalculated for all points  each

time it  .

Figure 2 –  Moving obstacle  representation

It is convenient to describe the requirement (18) by the minimal acceptable distance
between the sets:

d t min z zlq l q( ) = −        for zl  ε )(tlψ , zq  ε )(tqψ (21)
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To make sure (19) holds with some margin of error, the  following conditions are
imposed:

d d tlq lq
0 0− ≤( )      for  (l, q) ε Id  (22)

where dlq
0 0>  represents a given tolerance.

The properties of dlq  depend on the properties of   Cl   or Cq  . Gilbert & Johnson (1985)

proved that, if  either Cl   or Cq   is strictly convex, then dlq  is continuously  differentiable in

the domain.
Equation (22) can be used to represent the obstacle avoidance given by Eq. (7) in the

optimal control problem.
When  obstacles are found in the workspace it is necessary to add a penalty function to

the performance index to guarantee free-collision motion. The idea is  to circumscribe each
obstacle  into a specific sphere. Let ),,( 000 ZYX be the center of  an obstacle and  0r  the  radius

of the  sphere that circumscribe this obstacle. The trajectory points ),,( ZYX  which are located
outside the  sphere are accepted, according to the equation:
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where tr  is the distance between the center of the obstacle and a trajectory point, as

represented in  Fig. 3.

Figure 3 – Obstacle circumscribed by a sphere.

If  Eq.(24) is verified  the trajectory is out of the sphere and the penalty function ( disf ) is

zero. If the trajectory is tangent or crossing the sphere the performance index will be
penalized:
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where obsn  is the total number of obstacles in the workspace.
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There are situations, according to the topology of the obstacle, where it is more likely to
circumscribe the obstacle by an ellipsoid as shown in Fig. 4.

Let  a, b, c  be the semi-axes of the circumscribing  ellipsoids. Applying the same
principle used for the circumscribing spheres, the trajectory points which are located outside
the ellipsoid are accepted, according to the equation:
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where er  is the eccentricity.

Figure 4 – Obstacle circumscribed by an ellipsoid.

Penalization is used in this case as below:
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This way the optimal control problem is to minimize the performance index defined by
Eq. (1)  using  the penalty  functions  given  by Eq. (24) or (26), taking into account kinematic
and obstacle avoidance constraints.

It is interesting to mention the idea presented by Guldner et al (1997) in which an elegant
approach for obstacle avoidance is developed using artificial potential fields in such away that
the obstacles are protected by spherical or hyper-spherical security zones. To reduce the
computational complexity, only the closest obstacles determine the potential field. In the
present paper the given methodology uses a very similar principle when penalizing the
objective function and circumscribing the obstacle inside spheres or hyper-spheres.

4. NUMERICAL  APPLICATION

In this paper sequential optimization methods were used. As in this case a multicriterion
optimization problem is to be solved a scalar objective function was written using the
weighting coefficients method. Using the Augmented Lagrange Multiplier Method a pseudo-
objective function is written. Unconstrained minimization is performed by   Davidon -
Fletcher - Powell method utilizing a combination of the Golden Section and polynomial one-
dimensional search procedures. A non-linear optimization code DOT- Design Optimization
Tools Program (Vanderplaats, 1995) was coupled to the robot trajectory analysis program in
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order to obtain an automated design scheme. For the following applications a six d.o.f.
Stanford robot manipulator (Paul, 1982) as represented by  Fig. 5 and Table 1  was used.

Figure 5 – Stanford robot manipulator.

It is considered that the robot is initially at rest and comes to a full stop at the end of the
trajectory. This way  011 ==== mm qqqq ������  for all joints. Table 2 represents the  constraints

for displacement, velocities, acceleration,  jerk, torque/force. The coefficients associated  with
dissipation forces ( equation 11) are adopted  as: cf ( Nm) = [0,058  0,058  0,058  0,056  0,056

0,056]  and df ( Nm/s)=[0,0005 0,0005 0,000472   0,000382  0,000382  0,000382] .

     Table 2 – Constraints for the optimization problem

Constraint 1 2 3 4 5 6

QC (rd) 3,1 3,1 1,5 3,1 3,1 3,1

VC (rd/s) 2,5 2,5 2,5 2,5 2,5 2,5
WC (rd/ s2 ) 9,5 9,5 9,5 9,5 9,5 9,5
JC (rd/ s3 ) 50 50 50 50 50 50
UC (Nm) 50 80 100 10 10 10

Joint 3 – QC (m), VC (m/s), WC (m/ s2 ), JC (m/ s3 ), UC (N)

In this first application one aims at obtaining the end-effector optimal trajectory ( 1ψ ) in the

case  where the following  obstacles are considered: a wall ( 2ψ ), a  translating body ( 3ψ ) and

a  rotating and translating body ( 4ψ ).The initial and final trajectory points are given:

1q =[0,1745rd  0,1745rd  0,80m  0,0873rd  0,1745rd  0,1047rd]  and  mq = [-1,745rd 1,396rd

1,20m   -0,853rd  1,078rd  -1,3894rd]. The wall ( 1ψ ) was circumscribed by an ellipsoid and

the moving bodies were circumscribed by spheres. The optimization procedure was conducted
according to the subsequent steps: the optimal trajectory was firstly obtained for the case in
which the obstacles are not taken into account; in the second step the complete problem was
solved considering fixed and moving obstacles. The initial total traveling time was T=15 s
and the initial mechanical energy was E=42433 Nm. The optimal  results lead to T=12,4 s and
E=27875 Nm .  Figure 6 shows the end-effector three-dimensional trajectory.

Table 1 – Link parameters for the Stanford robot

Joint iθ iα   ia (m) id (m)

1 1θ 090− 0 0
2 2θ 090 0 1,2

3 0 0 0 3d

4 4θ 090− 0 0
5 5θ 090 0 0

6 6θ 0 0 0



Figure 6 – End-effector three-dimensional optimal trajectory –application 1.

In the second application the end-effector trajectory ( 1ψ ) of a Stanford manipulator has to

avoid a pendulum ( 2ψ ) and two fixed obstacles  ( 3ψ   and  4ψ ). The goal is to obtain the

optimal trajectory under the constraints given in Table 2.

Figure 7 – End-effector three-dimensional optimal trajectory – application 2.

In this case the initial and final points of the end-effector are: 1q = [ 0,1682rd  1,3849rd

1,1362m  -0,7555rd  -0,4702rd  0,1472rd ] and  mq = [-0,7610rd  0,2450rd  0,4123m 1,4366rd

1,0095rd –1,0146rd]. The initial total traveling time was T=11 s and the initial mechanical
energy was E=23462 Nm. The optimal  results lead to T=9,9 s and E=18871 Nm . Figure 7
presents the end-effector three-dimensional trajectory.
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7.  CONCLUSIONS

Obstacle avoidance was obtained by adding penalty functions to the function to be
minimized. Besides, constraints which describe minimal acceptable distance between
potentially colliding parts are also included in the general non-linear optimization problem.
The obstacles are protected by spherical or hyper-spherical security zones which are never
penetrated by the end-effector. All second order terms were included in the dynamic equations
of motion and friction was considered. In the case of significant operational velocities these
terms become important. The manipulator end-effector is represented in the model as a single
point. However the methodology can be easily extended to situations in which the geometry of
the end-effector is considered. When dealing with moving obstacles either the objective
function and the constraint functions have to be up-dated at each time instant. This aspect can
be considered a new approach for trajectory optimization problems. The results depend on the
weighting coefficients used to formulate the scalar multi-objective function and the initial
guess about the design variables.

Two  successful  numerical applications demonstrated the efficiency of the method. The
optimal traveling time and the minimal mechanical energy were obtained in the case where a
Stanford manipulator avoids fixed and moving obstacles. It should be pointed out that the
solutions obtained are engineering solutions. This means that global minimum is not
guaranteed. In the second application significant time reduction is not obtained for free-
collision trajectory because the pendulum motion creates additional difficulties with respect to
the problem constraints.
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