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Abstract — This paper presents a general methodology for the off-line three-dimensional
optimal trajectory planning of robot manipulators in the presence of moving obstacles.
Obstacle avoidance is obtained by adding penalty functions to the function to be minimized.
Besides, constraints which describe minimal acceptable distance between potentially
colliding parts are also included to the general non-linear optimization problem. The
obstacles are protected by spherical or hyper-spherical security zones which are never
penetrated by the end-effector. When dealing with moving obstacles either the objective
function and the constraint functions have to be up-dated at each time instant. Multi-criterion
objective functions are constructed to take into-account traveling time and mechanical energy
which are both minimized simultaneously. Numerical applications show the efficiency of the
methodol ogy presented.
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1. INTRODUCTION

Different engineering applications involve robot manipulators working in the presence of
fixed or moving obstacles. When repetitive processes are concerned it is possible to develop a
methodology to move a robot manipulator along a specified geometric path avoiding
obstacles. In this case path planning is defined as finding continuos and mutually compatible
trajectories for all its parts, such that the resulting motions is collision-free. This can be
achieved for minimum cost configuration through optimization techniques.

The problem of optimization of the trajectory of robot manipulators in the presence of
fixed obstacles has been treated by different authors (Ferreira & Sa da Costa, 1997). Previous
papers presented the case in which the optimization problem was written as a multiobjective
one, i. e., the tota traveling time and the mechanical energy absorbed by the actuators were
considered together to build a scalar objective function to be minimized (Richard, 1993) .
When moving obstacles are sharing the same workspace occupied by the robot manipulator
the optimization of the trgjectory defined by the end-effector is complex ( Nearchou, 1998).



This complexity is associated with the large number of constraints to be taken into-account by
the optimizer. These constraints are in this case time dependent.

This paper presents a design methodology to obtain the optimal off-line trajectory
planning of robot manipulators when moving obstacles have to be avoided by the end-
effector. The problem of optimal planning concerns the determination of the end-effector
robot motion at a minimum time and minimum mechanical energy between two given points
while satisfying the limits of the actuator efforts and avoiding collision with moving and fixed
obstacles. The obstacle avoidance is expressed in terms of the distances between potentially
colliding parts and the motion is represented using tranglation and rotational matrices. The
dynamical model of the robot is derived using Euler-Lagrange’s equations and Lagrange's
energy function. The inertia terms of the actuators are not neglected and friction forces are
included in the equations of motion. The joint trajectories are formulated using uniform cubic
B-spline functions, given only the initial and fina points. When obstacles are found in the
three-dimensional workspace it is necessary to add penalty functions to the multi-objective
problem to guarantee free-collision motion. The obstacles are protected by spherical or hyper-
spherical security zones which are never penetrated by the end-effector. To reduce the
computational effort only the closest obstacles are included in the penalty function at a given
time. The important assumption is that complete information on the geometry of the robot and
the obstacles are given beforehand. Two numerical applications related to a Stanford
manipulator are presented focusing at the methodology developed in this paper. In both cases
fixed and moving obstacles share the robot three-dimensiona workspace.

2. PROBLEM STATEMENT

Let a manipulator with n degree of freedom (d.o.f.) , consider that j represents the joints
and m represents the knots used to construct the trgjectories. The task is to move the robot in
the workspace avoiding the moving obstacles ¢, , while minimizing the traveling time and the

energy consumed by the robot, subject to physical constraints and actuator limits.

The optimal traveling time and the minimum mechanical energy of the actuators are
considered together to build a performance index such as the multi-criterion optimization
problem is defined as follows:

Minimize:
T n
Fe=a,T + azI Z (U @) dt + ay fys (1)
0 I=

where: T - total traveling time; u - generalized forces; fy, - penalty parameter to guarantee
free-collison motion; a, , a, , a; - weighting factors.

Subject to:
maxlqji (t)|SQC]- )
max|jS )< VC,‘ ©)
maxlqji )< WCj (4)
max|J i (t)| < JC; (5)
max|U; () | < UC; ; for j=1,2,..,n and i=1,2,...m1 (6)

dl?q —d,(t) <0 for (1,9)¢el, (7)



where: QC; is the displacement constraint, VC, is the velocity constraint, WC, is the
acceleration constraint, JC,; is the jerk constraint (jerk is defined as the rate of change of
acceleration), and UC, is the force/torque constraint for joint j. The obstacle avoidance is
givenby d,, (t) ,where |, representsthe set of possibly colliding pairs of parts.

According to Saramago & Steffen (1998) the generalized forces are calculated as:

n noj
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D; : inertia system matrix, Ia;: actuator inertia; C;, : Coriolis and centripetal forces matrix;
.. moments of inertia; r; : center of mass; G;: gravity loading vector;g: acceleration
due to gravity with respect to the base coordinate system.

N

Energy dissipation is taken into-account in this paper using the model presented by Van
Willigenburg & Loop (1991) in which both friction (Coulomb) and linear viscous damping
are considered together to write the dissipation force:

Fdiss= f. sign(q) + f4 g (12)
where: f. isthe Coulomb force coefficient and fq isthe viscous damping coefficient .

The generalized forces can be rewritten including the dissipation terms:

n n j
U = ZDiqu' +1gG + chijkCHCIk +G + Fdss,  j=1p (13)
J: J: —

To construct the joint trajectories, given only the initial and final points(g,and q,,), as

shown in Fig. 1, let auniform cubic B-spline defined as a polynomial third degree function f.
If the terminal time T isfixed, the trajectory g, (t) will be composed of uniform cubic

B-splineswith knots 0=t, <t, <.-<t__, <t =T, i.e.

qi(t):mz_qij(t), i=1,..,N (14)

where,



qij (t) = Vij—3b—3(t) + yjj b, (1) + Vj b4 () + V}—Ob{)(t) (15)

b_; arethe basis function and y‘j are the coefficients of the B-spline approximation for g, (t)
on theinterval I;.

q,d,
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Figure 1 — Trajectory of the end-effector.

For the problems with free terminal time anew time variable 7 =t/T isintroduced. This

way the interval [0,T] is replaced by the non-dimensional interval [0,1]. In this case, the
trajectories g, (7) are obtained with knots 0=17, <7, <--<71_, <1, =1 &s

qi(T)=Z_qi,-(T), i=1,...n (16)

where ) (r) is given by Eq. (15). Since q;(t) isa cubic polynomial in't, its derivatives
with respect to t are well defined . The initial guess for the unknown spline coefficients is
obtained
by fitting the straight lines joining the given initial (qg,) and final (q,,).

When the m points and terminal time T are adopted, Eq. (16) leads to n(m+2) unknowns
yij . The number of equations for each joint is m. So it is necessary, given velocities d,, 4, ,

to add two new equationsto the linear system. Thislinear system can be represented by:
A [V}] = [ﬁlg ji=1,...m and i=1,..,n (17)

Thus, adopting the points q;, the unknown spline coefficients yij are obtained solving

system (17), the displacement is obtained using Eq. (15), the velocity and the acceleration are
given by derivative of the Eq. (15). These equations are used to determine the inequality
kinematic constraints (see EQ. (2)-(5) above). In the optimization of the trgectories the

decision variables are the polynomial coefficients y‘j and the tota time T. We note that the
dimension of this design variable vector is n(m+2)+ 1.



3. OBSTACLE AVOIDANCE

In this problem, besides the kinematic constraints, we must add special constraints
corresponding to obstacle avoidance. These constraints require that:

O ny,®=0 for(l,q9el, (18)
where ¢, (t) aresetsin R? or R® and O isthe empty set.

The sets ¢, (t) describe the space occupied by the parts of the manipulator and the space

occupied by the obstacles in the manipulator workspace as given by Eq. (19). The sets C,

characterize the shape of the rigid bodies, while T, (t) and R, (t) describe the translation and
rotation of the bodies, respectively, i.e.:

LO=TOROG (19)

Each point belonging to an obstacle contour can be calculated as:

X, (t)O L 0 0 p,@t)0os@(t;)) -sin(@(t)) 0 00X, (t,)O
)5 © 1 0 p,®FFIn@E) cos@t) 0 ORF () (20)
Z,@)0 © 0 1 p, ()00 0O 0 1 00z, (t,)0
HiHBoo 1BH o 0 0o 188 1 H

where p_, p,, p, represent the translation and 6(t) the rotation of the point x,,y,, z,, as
shown in Fig. 2. The distance between the sets d,,(t) must be recalculated for all points each
timet, .

O
min |diq (to) |

Figure 2 — Moving obstacle representation

It is convenient to describe the requirement (18) by the minimal acceptable distance
between the sets:

di (1) :min‘zl —zq‘ for z € ¢, (1), z, € $q(t) (21)



To make sure (19) holds with some margin of error, the following conditions are
imposed:

d® -d,(t)y<0 for (,ge I, (22)

where dl‘; > 0 represents a given tolerance.
The properties of d,, depend on the propertiesof C, or C, . Gilbert & Johnson (1985)
proved that, if either C; or C, isstrictly convex, then d,, is continuously differentiable in

the domain.

Equation (22) can be used to represent the obstacle avoidance given by Eq. (7) in the
optimal control problem.

When obstacles are found in the workspace it is necessary to add a penalty function to
the performance index to guarantee free-collision motion. The idea is to circumscribe each
obstacle into a specific sphere. Let (x,,Y,, Z,) bethe center of an obstacleand r, the radius

of the sphere that circumscribe this obstacle. The trgjectory points(x, Y, z) which are located
outside the sphere are accepted, according to the equation:

F= (X = Xg)2+ (Y =Y)2+(Z -Z,)% >, (23)

where r, is the distance between the center of the obstacle and a trajectory point, as

represented in Fig. 3.
N

min I't

Figure 3 — Obstacle circumscribed by a sphere.

If Eq.(24) isverified the trajectory is out of the sphere and the penalty function ( f.) is

zero. If the trgectory is tangent or crossing the sphere the performance index will be
penalized:

frn>r O f4 =0
(24)

(min r‘t)2

0 |

Nobs
fr<r O fdiS=Z 1

where n, isthetotal number of obstaclesin the workspace.



There are situations, according to the topology of the obstacle, where it is more likely to
circumscribe the obstacle by an ellipsoid as shown in Fig. 4.

Let a, b, ¢ be the semi-axes of the circumscribing elipsoids. Applying the same
principle used for the circumscribing spheres, the trajectory points which are located outside
the ellipsoid are accepted, according to the equation:

_ 2 w2 ERY
e afo) LY bzvo) Py szo) 1 (25)

where r, isthe eccentricity.

Figure 4 — Obstacle circumscribed by an ellipsoid.

Pendlization is used in this case as below:

fr,p>1 0 fg=0
(26)

Nobs 1

fre<1 0O f4=
¢ ds ;(min re)2

This way the optimal control problem is to minimize the performance index defined by
Eg. (1) using the penalty functions given by Eq. (24) or (26), taking into account kinematic
and obstacle avoidance constraints.

It isinteresting to mention the idea presented by Guldner et al (1997) in which an elegant
approach for obstacle avoidance is developed using artificial potential fields in such away that
the obstacles are protected by spherical or hyper-spherical security zones. To reduce the
computational complexity, only the closest obstacles determine the potential field. In the
present paper the given methodology uses a very similar principle when penalizing the
objective function and circumscribing the obstacle inside spheres or hyper-spheres.

0

4. NUMERICAL APPLICATION

In this paper sequential optimization methods were used. As in this case a multicriterion
optimization problem is to be solved a scalar objective function was written using the
weighting coefficients method. Using the Augmented Lagrange Multiplier Method a pseudo-
objective function is written. Unconstrained minimization is performed by  Davidon -
Fletcher - Powell method utilizing a combination of the Golden Section and polynomial one-
dimensiona search procedures. A non-linear optimization code DOT- Design Optimization
Tools Program (Vanderplaats, 1995) was coupled to the robot trajectory analysis program in



order to obtain an automated design scheme. For the following applications a six d.o.f.
Stanford robot manipulator (Paul, 1982) as represented by Fig. 5and Table 1 was used.

Figure 5 — Stanford robot manipulator. Table 1 — Link parameters for the Stanford robot

Z Joint 6 g a (m di(m)
X 1 6, -90° 0 0
2 6, 90° 0 1,2
3 0 0 0 d,
20 , 4 6, -90° 0 0
ﬂ A 5 65 90° 0 0
6 0 0

It is considered that the robot is initialy at rest and comes to a full stop at the end of the
trajectory. Thisway ¢, =q, =¢, = ¢, =0 for dl joints. Table 2 represents the constraints

for displacement, velocities, acceleration, jerk, torque/force. The coefficients associated with
dissipation forces ( equation 11) are adopted as. f. ( Nm) =[0,058 0,058 0,058 0,056 0,056

0,056] and fq ( NmVs)=[0,0005 0,0005 0,000472 0,000382 0,000382 0,000382] .

Table 2 — Constraints for the optimization problem

Constraint 1 2 3 4 5 6
QC (rd) 31 31 15 3,1 31 31
VC (rd/s) 2,5 2,5 2,5 2,5 2,5 2,5

WC (rd/s?) 9,5 9,5 9,5 9,5 9,5 9,5
JC (rd/s%) 50 50 50 50 50 50
UC (Nm) 50 80 100 10 10 10

Joint 3—QC (m), VC (m/s), WC (m/ s?), JC (mV %), UC (N))

In this first application one aims at obtaining the end-effector optimal trajectory ({,) in the
case wherethe following obstacles are considered: awall (¢ ,), a translating body (¢ ,) and
a rotating and trandating body (¢ ,).The initid and final trgjectory points are given:
0,=[0,1745rd 0,1745rd 0,80m 0,0873rd 0,1745rd 0,1047rd] and q,,= [-1,745rd 1,39%6rd

1,20m -0,853rd 1,078rd -1,3894rd]. The wall (4,) was circumscribed by an ellipsoid and

the moving bodies were circumscribed by spheres. The optimization procedure was conducted
according to the subsequent steps. the optimal trgjectory was firstly obtained for the case in
which the obstacles are not taken into account; in the second step the complete problem was
solved considering fixed and moving obstacles. The initial total traveling time was T=15 s
and the initial mechanical energy was E=42433 Nm. The optimal results lead to T=12,4 s and
E=27875 Nm. Figure 6 shows the end-effector three-dimensional trgectory.
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Figure 6 — End-effector three-dimensional optimal trajectory —application 1.

In the second application the end-effector trajectory (¢,) of a Stanford manipulator has to

avoid a pendulum (¢ ,) and two fixed obstacles (¢, and ¢ ,). The god is to obtain the
optimal trgjectory under the constraints givenin Table 2.

NN

t=1.05s t=4.19s
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t=6.29 s t=7.86 s t=9.90s

Figure 7 — End-effector three-dimensional optimal tragjectory — application 2.

In this case the initial and final points of the end-effector are: q,= [ 0,1682rd 1,3849rd
1,1362m -0,7555rd -0,4702rd 0,1472rd ] and ¢,,= [-0,7610rd 0,2450rd 0,4123m 1,4366rd

1,0095rd —1,0146rd]. The initial total traveling time was T=11 s and the initial mechanical
energy was E=23462 Nm. The optima results lead to T=9,9 s and E=18871 Nm . Figure 7
presents the end-effector three-dimensional trajectory.



7. CONCLUSIONS

Obstacle avoidance was obtained by adding penalty functions to the function to be
minimized. Besides, constraints which describe minimal acceptable distance between
potentially colliding parts are also included in the general non-linear optimization problem.
The obstacles are protected by spherical or hyper-spherical security zones which are never
penetrated by the end-effector. All second order terms were included in the dynamic equations
of motion and friction was considered. In the case of significant operational velocities these
terms become important. The manipulator end-effector is represented in the model as asingle
point. However the methodology can be easily extended to situations in which the geometry of
the end-effector is considered. When dealing with moving obstacles either the objective
function and the constraint functions have to be up-dated at each time instant. This aspect can
be considered a new approach for trajectory optimization problems. The results depend on the
weighting coefficients used to formulate the scalar multi-objective function and the initial
guess about the design variables.

Two successful numerical applications demonstrated the efficiency of the method. The
optimal traveling time and the minimal mechanical energy were obtained in the case where a
Stanford manipulator avoids fixed and moving obstacles. It should be pointed out that the
solutions obtained are engineering solutions. This means that global minimum is not
guaranteed. In the second application significant time reduction is not obtained for free-
collision trgjectory because the pendulum motion creates additional difficulties with respect to
the problem constraints.
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